

Vector Database 101: A Crash Course

Yujian Tang | Zilliz

Speaker

Yujian Tang

Developer Advocate, Zilliz

yujian@zilliz.com https://www.linkedin.com/in/yujiantang https://www.twitter.com/yujian_tang

Zilliz at a Glance

Founded	2017
Headquarters	Redwood Shores, CA
-	

Focus Vector database company for enterprise-grade AI built on Milvus, the popular open-source vector database that helps organizations quickly create AI applications.

Key maintainer of the following Open-Source projects

GPT-Cache

04 Demo

01 Vector Databases 101 Review

03 How do Vector Databases Work?

02 Vector Database Use Cases

01 Vector Databases 101 Review

Why Vector Databases?

- Unstructured Data is 80% of data
- Vector Databases are the only type of database that can work with unstructured data
 - Examples of Unstructured Data include text, images, videos, audio, etc

Traditional databases were built on exact search

...which misses context, semantic meaning, and user intent

But wait! There's more!

Where do Vectors Come From?

02 Vector Database Use Cases

Common AI Use Cases

Retrieval Augmented Generation (RAG)

Expand LLMs' knowledge by incorporating external data sources into LLMs and your AI applications.

Recommender System

Match user behavior or content features with other similar ones to make effective recommendations.

Text/ Semantic Search

Search for semantically similar texts across vast amounts of natural language documents.

<u>∠</u>∩

Image Similarity Search

Identify and search for visually similar images or objects from a vast collection of image libraries.

Video Similarity Search

Search for similar videos, scenes, or objects from extensive collections of video libraries.

Audio Similarity Search

 Find similar audios in large datasets for tasks like genre classification or speech recognition

Molecular Similarity Search

Search for similar substructures, superstructures, and other structures for a specific molecule.

Anomaly Detection

Detect data points, events, and observations that deviate significantly from the usual pattern

Multimodal Similarity Search

Search over multiple types of data simultaneously, e.g. text and images

Reverse Image Search - Paintings

Search Time: 0.04515886306762695

Search Time: 0.04515886306762695

Search Time: 0.04515886306762695

Distance: 309.62115478515625

Distance: 480.86712646484375

Distance: 344.67144775390625

Distance: 360.00323486328125

Distance: 490.3711853027344

Distance: 354.292724609375

Distance: 362.6828918457031

Distance: 501.04180908203125

Distance: 363.62158203125

Text Search on Wikipedia

pprint(res_512_plot.response)

('The plot of "The Nightmare Before Christmas" revolves around Jack '
'Skellington, the Pumpkin King of Halloween Town, who becomes tired of the '
'same routine of Halloween and discovers Christmas Town. Intrigued by the '
'concept of Christmas, Jack decides that Halloween Town will take over '
'Christmas this year. He assigns the residents various Christmas-themed '
"tasks, but his efforts lead to disastrous consequences. Jack's love "
'interest, Sally, warns him about the potential disaster, but he dismisses '
'her warnings. Eventually, Jack realizes his mistake and sets out to fix the '
'chaos he has caused. With the help of Santa Claus, Jack saves Christmas and '
'learns the true meaning of the holiday. The film ends with Jack and Sally '
'declaring their love for each other [6][7][8][9].')

03 How do Vector Databases Work?

Example Entry

"id": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-9275854" embedding": [-0.042092223,-0.0154002765,-0.014588429,-0.031147376,0.03801204,0.013369046,("date": "2023-06-01"

"paragraph": "We define an anomaly as follows:"

"reading_time": "11"

"subtitle": "A guide for the implementation of an anomaly..."

"publication": "Towards Data Science"

"responses": "1"

"article_url": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-

"title": "Detection of Credit Card Fraud with an Autoencoder"

"claps": "229"

Q Vector search

Semantic Similarity

Image from Sutor et al

Vector Similarity Measures: L2 (Euclidean)

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}$$

King = [0.5, 0.7]

Queen = [0.3, 0.9]

d(Queen, King) = $\sqrt{(0.3-0.5)^2 + (0.9-0.7)^2}$ = $\sqrt{(0.2)^2 + (0.2)^2}$ = $\sqrt{0.04 + 0.04}$ = $\sqrt{0.08} \approx 0.28$

Vector Similarity Measures: Inner Product (IP)

$$a \cdot b = \sum_{i=1}^n a_i b_i$$

Queen \cdot King = (0.3*0.5) + (0.9*0.7)

= 0.15 + 0.63 = 0.78

Vector Similarity Measures: Cosine

Inverted File Index

HNSW

SQ

PQ

Source:

https://towardsdatascience.com/product-quantization-for-similarity-search-2f1f67c5fddd

Demo

What is the Demo?

- Download three embeddings models
- Make up a data set
- Embed your data set with two models
- Ingest your data sets into Milvus
- Query and compare the third set of embeddings against your loaded data
- What do you think will happen?

Demo

Start building with Zilliz Cloud today! zilliz.com/cloud