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A Quick 
Refresher
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Vectors unlock unstructured data

Knowledge Base
(Documents) Embedding Models Vectors Vector Databases
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Embeddings models are workhorses of AI apps
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There are lots of embedding models out there

Source: MTEB Leaderboard

https://huggingface.co/spaces/mteb/leaderboard
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Visualizing dense embeddings

Source: Arize Phoenix

https://github.com/Arize-ai/phoenix
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Recurrent neural networks

Source: CS230 notes

https://github.com/afshinea/stanford-cs-230-deep-learning
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Sentence BERT  

Source: SBERT paper

Bi-encoder
1 embedding per text

https://arxiv.org/abs/1908.10084
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Sparse 
Embeddings
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Dense embeddings are great…
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Dense embeddings are great…

… but they lack lexical information
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We’re used to searching lexically, not semantically
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We’re used to searching lexically, not semantically

• Here are some common Google searches
• “rubik’s cube algorithm”
• “cups in a quart”
• “how to tie a tie”
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We’re used to searching lexically, not semantically

• Here are some common Google searches
• “rubik’s cube algorithm”
• “cups in a quart”
• “how to tie a tie”

• Keywords play an important role
• Lexical search is superior for out-of-domain data
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We can combine sparse and dense embeddings
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We can combine sparse and dense embeddings

Source: Sowmiya Jaganathan

https://medium.com/@sowmiyajaganathan/hybrid-search-with-re-ranking-ff120c8a426d
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Sparse 
Embedding 
Algorithms
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Pure lexical sparse embeddings (e.g. TF-IDF)

Source: Ted Mei

https://ted-mei.medium.com/demystify-tf-idf-in-indexing-and-ranking-5c3ae88c3fa0
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“Learned” sparse embeddings (e.g. SPLADE)

Source: Buqian Zheng

https://www.linkedin.com/in/zhengbuqian
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Bonus: ColBERT

Source: BERT paper

https://arxiv.org/abs/1810.04805
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Bonus: ColBERT

Source: ColBERT paper

https://arxiv.org/pdf/2004.12832.pdf
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Demo Time
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BGE-M3

• Multilingual
• Supports multiple natural languages
• Cross-lingual in addition to multi-lingual

 
• Multifunctional

• Supports both dense and sparse (splade-like) vectors
• Late interaction model i.e. ColBERT

• Multigranular
• Embeds short phrases as well as long documents
• Up to 8192 token length
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BGE-M3’s Sparse Vectors

Source: BGE-M3 paper

https://arxiv.org/pdf/2402.03216.pdf

