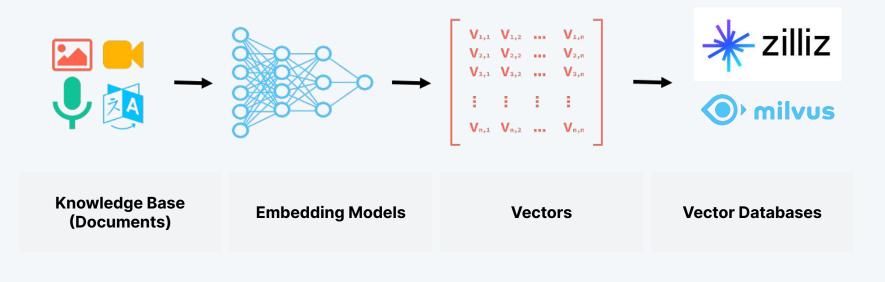


Sparse and Dense Embeddings

Frank Liu

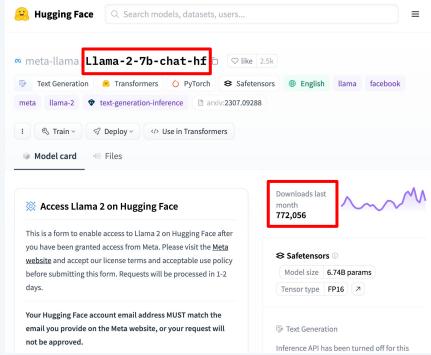
A Quick Refresher

Vectors unlock unstructured data



Embeddings models are workhorses of AI apps

Hugging Face Q Search models, datasets, users					
sentence-transformers all-MiniLM-L6-v2					
Sentence Similarity Sentence Transformers () PyTorch 🎓 TensorFlow 😨 Rust 📑 s2orc					
flax-sentence-embeddings/stackexchange_xml = ms_marco = gooaq = yahoo_answers_topics					
<pre>code_search_net = search_qa = eli5 = snli = multi_nli = wikihow = natural_questions</pre>					
<pre>trivia_qa = embedding-data/sentence-compression = embedding-data/flickr30k-captions</pre>					
<pre>embedding-data/altlex = embedding-data/simple-wiki = embedding-data/QQP</pre>					
🖷 embedding-data/SPECTER 🛛 🛢 embedding-data/PAQ_pairs 🛛 🖶 embedding-data/WikiAnswers 🛛 🌐 English					
bert feature-extraction 🕼 Inference Endpoints 🗋 arxiv:1904.06472 🗋 arxiv:2102.07033					
arxiv:2104.08727					
Image: Second system Image: Second system Image: Second system Image: Second system					
Model card JE Files Community 22					
🖉 Edit model card					
all-MiniLM-L6-v2					
This is a <u>sentence-transformers</u> model: It maps					

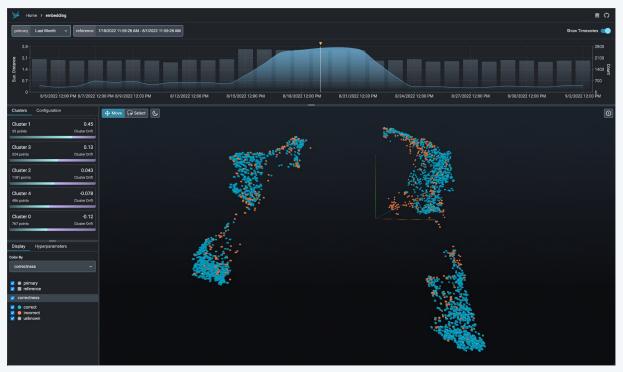


There are lots of embedding models out there

Rank 🔺	Model 🔺	Average 🔺	AskUbuntuDupQuestions	MindSmallReranking	SciDocsRR 🔺	StackOverflowDupQuestions
1	e5-mistral-7b-instruct	60.21	66.98	32.6	86.33	54.91
2	ember-v1	60.04	64.46	32.27	87.56	55.85
3	bge-large-en-v1.5	60.03	64.47	32.06	87.63	55.95
4	UAE-Large-V1	59.88	64.2	32.51	87.49	55.32
5	<u>sf model e5</u>	59.86	64.32	32.27	87.47	55.4
6	voyage-lite-01-instruct	59.74	65.77	31.69	87.03	54.49
7	all-mpnet-base-v2	59.36	65.85	30.97	88.65	51.98
8	<u>gte-large</u>	59.13	63.06	32.63	87.2	53.63
9	bge-base-en-v1.5-quant	58.94	62.39	31.89	87.05	54.45
10	<u>bge-base-en-v1-5-seqlen-384-bs-1</u>	58.86	62.13	31.2	87.49	54.61
11	bge-base-en-v1.5	58.86	62.13	31.2	87.49	54.61
12	<u>stella-base-en-v2</u>	58.78	62.72	31.91	86.66	53.81

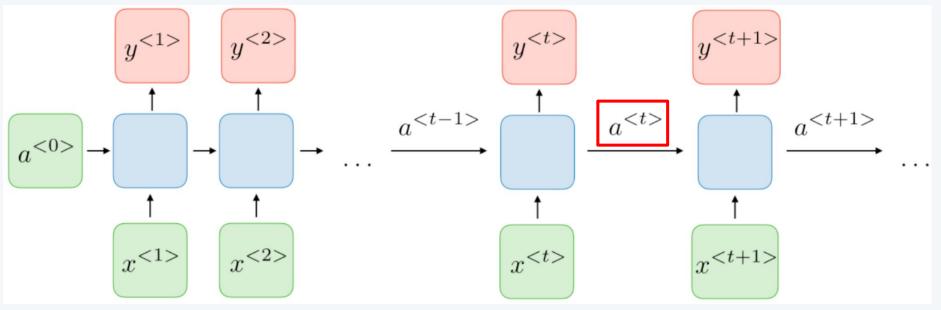
Source: MTEB Leaderboard

Visualizing dense embeddings



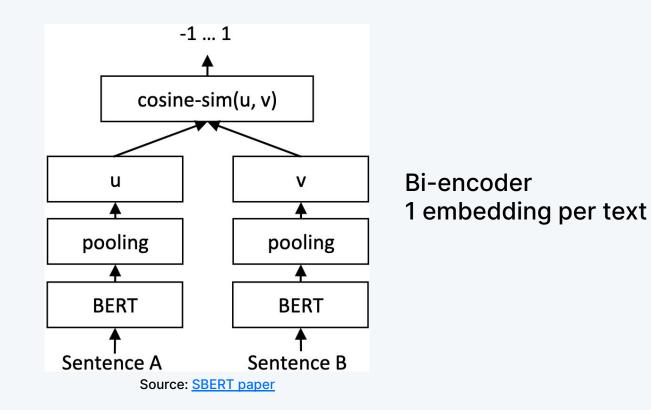
Source: Arize Phoenix

Recurrent neural networks



Source: CS230 notes

Sentence BERT



Sparse Embeddings

Dense embeddings are great...

Dense embeddings are great...

... but they lack lexical information

- Here are some common Google searches
 - "rubik's cube algorithm"
 - "cups in a quart"
 - "how to tie a tie"

- Here are some common Google searches
 - "rubik's cube algorithm"
 - "cups in a quart"
 - "how to tie a tie"
- Keywords play an important role

- Here are some common Google searches
 - "rubik's cube algorithm"
 - "cups in a quart"
 - "how to tie a tie"
- Keywords play an important role
 - Lexical search is superior for out-of-domain data

We can combine sparse and dense embeddings

We can combine sparse and dense embeddings

Ranking	BM25 with title boosting	BM25 with content boosting	Semantic
1	Document-2	Document-3	Document-4
2	Document-3	Document-5	Document-2
3	Document-5	Document-2	Document-5
4	Document-1	Document-1	Document-3
5	Document-4	Document-4	Document-1

Let's calculate RRF for each document and rerank:

Document-1	1/4 + 1/4 + 1/5	= 0.7		Document-2
Document-2	1/1+1/3+1/2	= 0.83		Document-3
Document-3	1/2 + 1/1 + 1/4	=1.75	⇒	Document-4
Document-4	1/5 + 1/5 + 1/1	=1.4		Document-5
Document-5	1/3+1/2+1/3	=1.16		Document-1

Source: Sowmiya Jaganathan

Sparse Embedding Algorithms

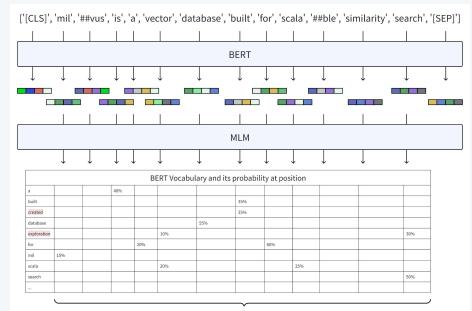
Pure lexical sparse embeddings (e.g. TF-IDF)

$$W_{x,y} = tf_{x,y} \times log\left(\frac{N}{df_x}\right)$$

tf_{x,y} = frequency of x in y df_x = number of documents containing x N = total number of documents

Source: Ted Mei

"Learned" sparse embeddings (e.g. SPLADE)

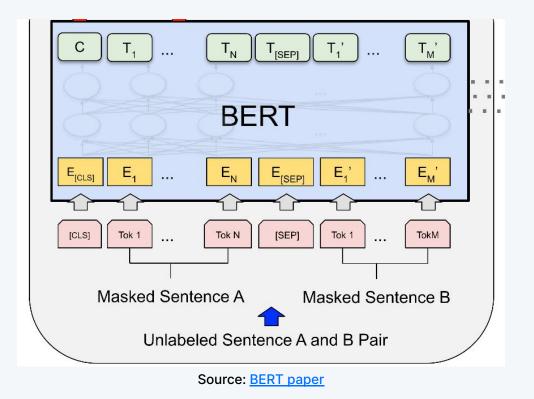


Aggregate the score of each token from all positions

{'a': 0.4, 'built': 0.35, 'created': 0.25, 'database': 0.55, 'exploration': 0.1, 'for': 0.8, 'mil': 0.15, 'scala': 0.45, 'search': 0.5, ...}

Source: Bugian Zheng

Bonus: ColBERT



Bonus: ColBERT

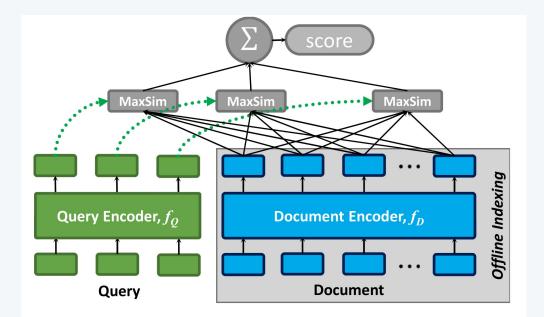


Figure 3: The general architecture of ColBERT given a query *q* and a document *d*.

Source: ColBERT paper

Demo Time

BGE-M3

- Multilingual
 - Supports multiple natural languages
 - Cross-lingual in addition to multi-lingual
- Multifunctional
 - Supports both dense and sparse (splade-like) vectors
 - Late interaction model i.e. ColBERT
- Multigranular
 - Embeds short phrases as well as long documents
 - Up to 8192 token length

BGE-M3's Sparse Vectors

• Lexical Retrieval. The output embeddings are also used to estimate the importance of each term to facilitate lexical retrieval. For each term t within the query (a term is corresponding to a token in our work), the term weight is computed as $w_{q_t} \leftarrow \mathsf{Relu}(\mathbf{W}_{lex}^T \mathbf{H}_{\mathbf{q}}[i])), \text{ where } \mathbf{W}_{lex} \in \mathcal{R}^{d \times 1}$ is the matrix mapping the hidden state to a float number. If a term t appears multiple times in the query, we only retain its max weight. We use the same way to compute the weight of each term in the passage. Based on the estimation term weights, the relevance score between query and passage is computed by the joint importance of the co-existed terms (denoted as $q \cap p$) within the query and passage: $s_{lex} \leftarrow \sum_{t \in q \cap p} (w_{q_t} * w_{p_t}).$

Source: BGE-M3 paper

