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Outline: 
1. Introduction

a. Here are these use cases and how you can use LLMs to solve that problem
b. Challenge of hallucination

2. Intro RAG
a. That’s where RAG comes in

3. Challenges w/ RAG
a. Lack of metrics that measure if you have the right content and context 
b. Need a way to systematically measure if you have the right context
c. Galileo offers consistent evaluation metrics across prompting and production monitoring
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Demo Flow: Go over a way to chat w/ Towards Data Science (here’s how we’ll retrieve data, 

Goal: Chat with data taken from Towards Data Science

1. Connect your workbook to Zilliz 
a. Yujian has prepped workbooks w/ reasonable responses
b. Uploaded on Zilliz cloud (will share file via Google)

2. Conduct a run
a. In the workbook, show a user asking a question of the LLM
b. Question 1: Explain Vector Embeddings to Me

i. Answer 1 (in notebook): LLM responds with an answer derived from Towards Data Science
c. Question 2: What is the best phone to buy

i. Answer 2 (in notebook): The best phone to buy is the iPhone 15 Pro (this is clearly out of 
context as it’s not derived from Towards Data Science)

3. Pivot into Galileo (show Galileo UI)
a. For Question 2, Answer 2 is based on data from o outside Towards Data Science (not good)

i. Show Groundedness score and hover on explanation 
b. Edit prompt and ask Question 2 again (can we edit the prompt in Galileo UI? If not, show in 

notebook)
i. Expected output: “I don’t have an output for this question”
ii. Answer 3: Sorry don’t have enough context, Galileo groundedness = 0
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01 Why Use RAG?
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A Hallucination Problem
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A Basic Neural Net
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A Recurrent Neural Network
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A Transformer Architecture
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GPT Architecture
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Takeaway

The reason ChatGPT hallucinates is because …

It’s set up to predict a series of words (tokens)



14 |   © Copyright  2023  Zilliz14

02 How Can You Build Your 
RAG App?
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What is RAG?

Inject YOUR custom data on top of an LLM

Use similarity search to find the right data
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Basic RAG Architecture

Query LLM Milvus LLM End User
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What’s a RAG tech stack look like?

CVP Stack

C: ChatGPT (or any other LLM)
• This can also be interpreted as the “processor” block for CVP

V: Vector database (e.g. Milvus)
• Can also be interpreted as the “storage” block for CVP

P: Prompt-as-code (e.g. Haystack)
• Interface between processor and storage blocks 
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Takeaway

A RAG App can be built like a computer

using an LLM for compute (CPU/GPU), a vector database for 

storage (hard drive), and prompt as code (interface) 
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03 The Role of Vector 
Embeddings
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Vector 
Databases

Where do Vectors Come From?
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Semantic Similarity

Image from Sutor et al

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Man = [0.5, 0.2]

Queen - Woman + Man = King

Queen = [0.3, 0.9]
-      Woman = [0.3, 0.4]

                       [0.0, 0.5]
+          Man = [0.5, 0.2]

            King = [0.5, 0.7]Man = [0.5, 0.2]

https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657
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04 Evaluating Your RAG Outputs 
Using Embeddings
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Evaluating Your RAG Outputs Using Embeddings

Vector DB

Prompt RAG OutputPrompt + Context

Documents / Context
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Vector DB

Prompt RAG OutputPrompt + Context

Documents / Context

Is this prompt pertinent to the 
desired outcome?

Is the documents vector space too sparse?
Are the documents relevant to get my desired 
outcome?

Is the output grounded in the 
given documents?

❌ ❌

❌

Evaluating Your RAG Outputs Using Embeddings

A 10K foot view of a RAG workflow
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Vector DB

Prompt RAG OutputPrompt + Context

Documents / Context

Prompt Relevance Groundedness

Sparsity

⏲ ⏲

⏲How pertinent is my query or prompt to 
the output of the LLM?

How dense or sparse is the region of 
the embeddings space from which the 
documents are fetched?

How grounded in the provided context 
is the output of the LLM?

Evaluating Your RAG Outputs Using Embeddings

Doc Relevance
Which chunks of the documents were 
most relevant and served as the 
grounding for the LLMs output

A 10K foot view of a RAG workflow
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Query LLM Milvus LLM End User

⏲ ⏲ ⏲ ⏲

Algorithmic Evaluation of RAG Workflows

Evaluating Your RAG Outputs Using Embeddings

Prompt Store Vector DB 
(Embedding Store) Metrics Store
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05 Demo
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T H A N K   Y O U 
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05 Appendix


