

Vector Search Best Practices

Yujian Tang

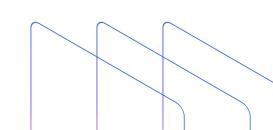
Upcoming Events

zilliz.com/event

Vector Search Best Practices

Yujian Tang

Speaker



Yujian Tang

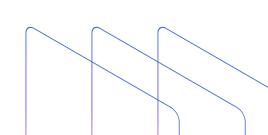
Developer Advocate, Zilliz

yujian@zilliz.com
https://www.linkedin.com/in/yujiantang
https://www.twitter.com/yujian_tang

Company

@Zilliz_Universe

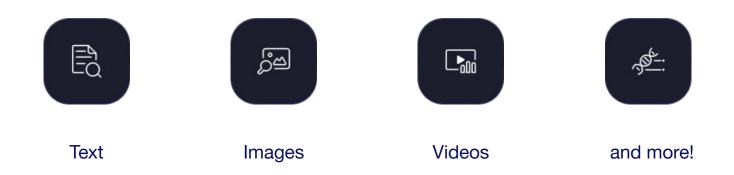
linkedin.com/in/zilliz



milvusio.slack.com

github.com/milvus-io/milvus

zilliz.com


- 01 Why do I Need Vector Embeddings?
- 02 What's a Vector Embedding?
- 03 How do Vector Databases Work?
- 04 Getting Started with a Vector Database

U1 Why do I Need Vector Embeddings?

Unstructured Data is Everywhere

Unstructured data is any data that does not conform to a predefined data model.

By 2025, IDC estimates there will be 175 zettabytes of data globally (that's 175 with 21 zeros), with 80% of that data being unstructured. Currently, 90% of unstructured data is never analyzed.

Where can Vector Databases Help?

Image similarity search

Images made searchable and instantaneously return the most similar images from a massive database.

Molecular similarity search

Blazing fast similarity search, substructure search, or superstructure search for a specified molecule.

Question answering system

Interactive digital QA chatbot that automatically answers user questions.

Video similarity search

Converting key frames into vectors and storing the results, lets billions of videos be recommended in near real time.

Text search engine

Help users find the information they are looking for by comparing keywords against a database of texts.

Recommender system

Recommend information or products based on user behaviors and needs.

Audio similarity search

Quickly query massive volumes of audio data such as speech, music, sound effects, and surface similar sounds.

DNA sequence classification

Accurately sort out the classification of a gene in milliseconds by comparing similar DNA sequence.

Anomaly detection

Identifies data points, events, and/or observations that deviate from a dataset's normal behavior.

Adding Data to LLMs

Product Recommendations

Still Looking For Shoes?

Get 20% off your next order with SHOES200FF coupon.

Add to cart

Light Blue Shoes €78.00

Add to cart

Black Shoes with Brown Details €75.00

Add to cart

Brown and Black Shoes

€75.00

Add to cart

Reverse Image Search

Exploring Generative Al Use Cases

Image similarity search

Images made searchable and instantaneously return the most similar images from a massive database.

Molecular similarity search

Blazing fast similarity search, substructure search, or superstructure search for a specified molecule.

Question answering system

Interactive digital QA chatbot that automatically answers user questions.

Video similarity search

Converting key frames into vectors and storing the results, lets billions of videos be recommended in near real time.

Text search engine

Help users find the information they are looking for by comparing keywords against a database of texts.

Recommender system

Recommend information or products based on user behaviors and needs.

Audio similarity search

Quickly query massive volumes of audio data such as speech, music, sound effects, and surface similar sounds.

DNA sequence classification

Accurately sort out the classification of a gene in milliseconds by comparing similar DNA sequence.

Anomaly detection

Identifies data points, events, and/or observations that deviate from a dataset's normal behavior.

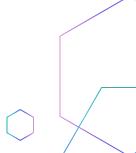
Exploring Generative Al Use Cases

Example

A company has 100,000s+ pages of proprietary documentation to enable their staff to service customers.

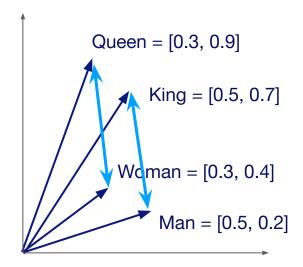
Problem

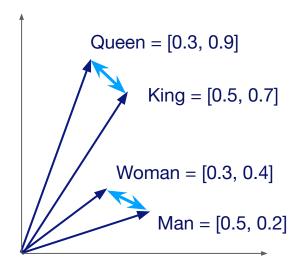
Searching can be slow, inefficient, or lack context.


Solution

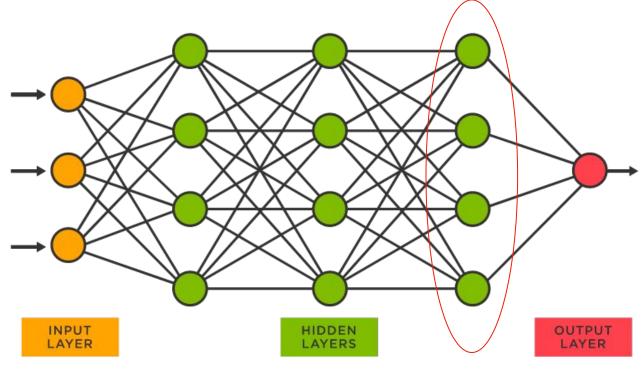
Create internal chatbot with ChatGPT and a vector database enriched with company documentation to provide direction and support to employees and customers.

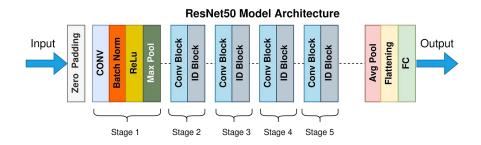
02


What's a Vector Embedding?



Introduction to Vectors

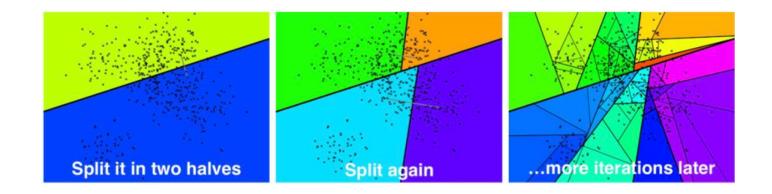

- Access to Domain Knowledge
- Semantic Search on Domain Knowledge via Vector Embeddings


How are these generated?

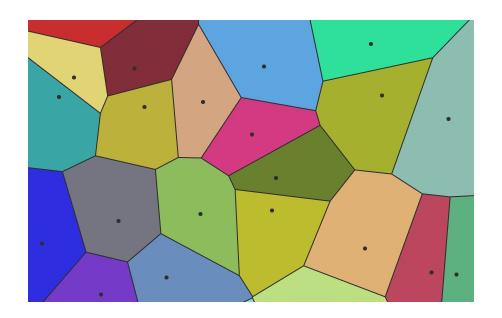
Vector Embedding Model Choice

What Do They Look Like?

Data Preview Vector Search Collection Details Schema 1-10 of 100 Datasets "id": 125 "title_vector": [0.014838364,-0.017620698,0.039551493,0.015700748,-0.0011719975,-0.013021858,-0.010251275,0.01275... "reading time": "5" "publication": "UX Collective" "link": "https://uxdesign.cc/the-dawn-of-dark-mode-9636d1c9bcf0" "responses": "0" "title": "The dawn of Dark Mode" "claps": "151" ↑ Hide 3 fields Q Vector search "id": 148 "title_vector": [0.034213345,-0.011796185,0.04076254,0.026783876,0.019659683,-0.025119903,0.016597062,0.024722276... "reading_time": "4" "publication": "The Startup" "link": "https://medium.com/swlh/whats-next-for-neobanks-e304c900be98" "responses": "0" "title": "What's Next for NeoBanks?" "claps": "136" ↑ Hide 3 fields Q Vector search

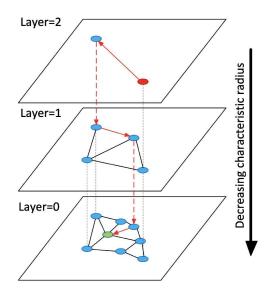

03

How do Vector Databases Work?



Approximate Nearest Neighbors Oh Yeah

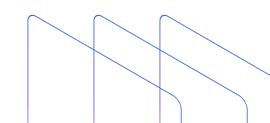
Source: https://sds-aau.github.io/M3Port19/portfolio/ann/


Inverted File Index

Source:

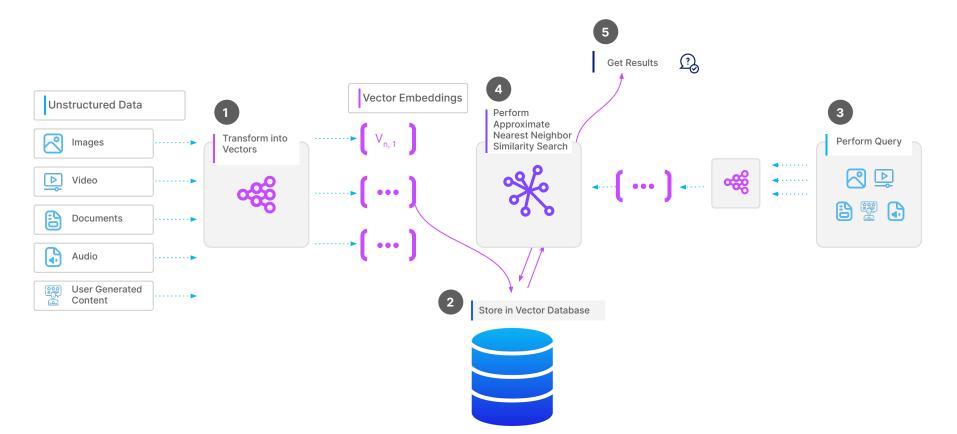
https://towardsdatascience.com/similarity-search-with-ivfpq-9c6348fd4db3

Hierarchical Navigable Small Worlds (HNSW)

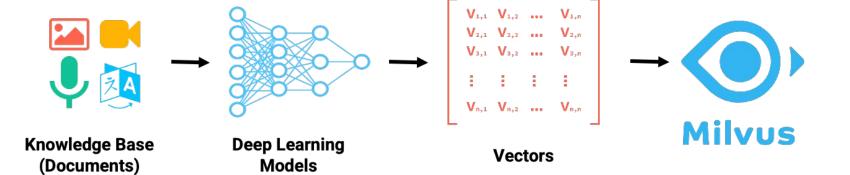

Source:

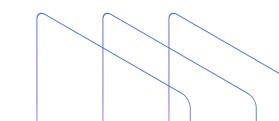
https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

Why a Purpose-Built Vector Database?

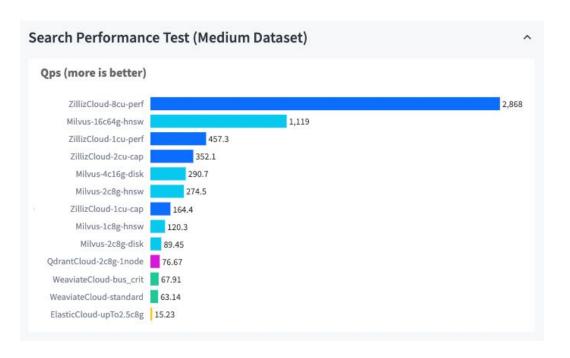

- Vector search library
 - High-performance vector search
- Vector database
 - Advanced filtering (filtered vector search, chained filters)
 - Hybrid search (e.g. full text + dense vector)
 - Durability (any write in a db is durable, a library typically only supports snapshotting)
 - Replication / High Availability
 - Sharding
 - Aggregations or faceted search
 - Backups
 - Lifecycle management (CRUD, Batch delete, dropping whole indexes, reindexing)
 - Multi-tenancy

- How do I support different applications?
 - High query load
 - High insertion/deletion
 - Full precision/recall
 - Accelerator support (GPU, FPGA)
 - Billion-scale storage




Getting Started with a Vector Database

How Similarity Search Works



How Do We Implement This in Practice?

Vector Database Benchmarking

Get Started Today

