

The Key to Scaling LLM Applications

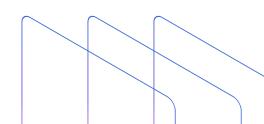
Yujian Tang

Speaker

Yujian Tang

Developer Advocate, Zilliz

yujian@zilliz.com https://www.linkedin.com/in/yujiantang https://www.twitter.com/yujian_tang



Company

@Zilliz_Universe

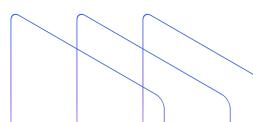
linkedin.com/in/zilliz

milvusio.slack.com

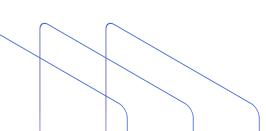
ijĻ

github.com/milvus-io/milvus

zilliz.com



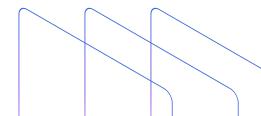
- 02 Challenges with LLMs
- 03 The CVP Framework
- 04 What is a Vector Database? Feat. Milvus
- 05 A Quick Demo



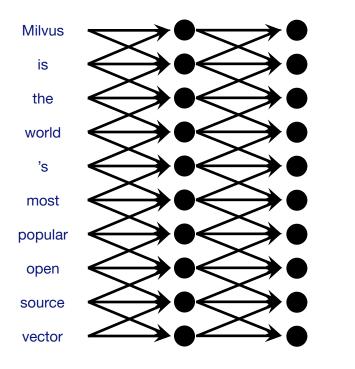
Large Language Models (LLMs)

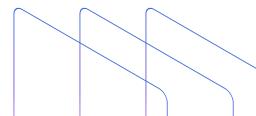
01 Lorgo Longuogo Modolo (LLMo)

Claude Bard Experiment

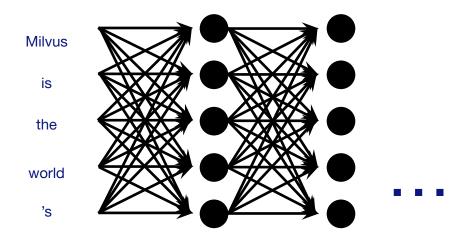


Convolution

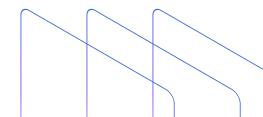




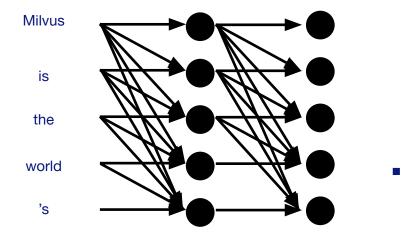
Self-Attention



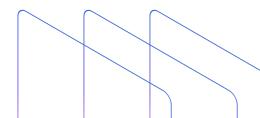
(Global context)



Causal Attention



(Directional global context)



LLMs are Stochastic

• LLMs predict future tokens (a-la RNNs)

- "Milvus is the world 's most popular vector ____"
- {"database": 0.86, "search": 0.11, "embedding", 0.01, ...}
- Downside: outdated input data could be cause for hallucination
 - Plausible-sounding but factually incorrect responses

Some Obligatory Math

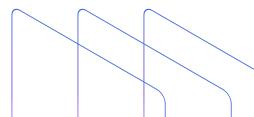
- Goal: given some tokens t_0, t_1, \dots, t_n : predict t_{n+1}
- Model outputs a probability distribution across all possible tokens
 - *p*("database" | "milvus", "is", "the"...) = 0.86
 - *p*("search" | "milvus", "is", "the"...) = 0.11
 - *p*("embedding" | "milvus", "is", "the"...) = 0.01

• $\theta \in \mathbb{R}^{\mathbb{N}}$

• Some set of N total parameters (weights)

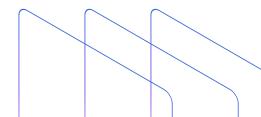
• D

- Input dataset (training data)
- L(θ, D)
 - Causal language modeling loss



02 Challenges with LLMs

• Query: "How do I perform a query using Milvus?"



import random

from milvus import Milvus, IndexType, MetricType

Set up a connection to Milvus server
milvus = Milvus(host='localhost', port='19530')

Create a collection

collection_name = 'my_collection'
milvus.create_collection({
 'collection_name': collection_name,
 'dimension': 512,
 'index_file_size': 1024,
 'metric_type': MetricType.L2

})

```
# Insert vectors
vectors = [[random.random() for _ in range(512)] for _ in range(1000)]
ids = [i for i in range(1000)]
milvus.insert(collection_name=collection_name, records=vectors, ids=ids)
```

Build an index

milvus.create_index(collection_name, IndexType.IVF_FLAT, {"nlist": 128})

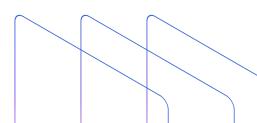
Perform a query

query_vector = [random.random() for _ in range(512)]
results = milvus.search(collection_name, query_records=[query_vector], top_

```
import random
from milvus import
                  Milvus
                           IndexType, MetricType
# Set up a connection to Milvus server
milvus = Milvus(host='localhost', port='19530')
# Create a collection
collection_name = 'my_collection'
milvus.create_collection({
    'collection_name': collection_name,
    'dimension': 512,
    'index_file_size': 1024,
    'metric_type': MetricType.L2
})
# Insert vectors
vectors = [[random.random() for _ in range(512)] for _ in range(1000)]
ids = [i for i in range(1000)]
milvus.insert(collection_name=collection_name, records=vectors, ids=ids)
# Build an index
milvus.create_index(collection_name, IndexType.IVF_FLAT, {"nlist": 128})
# Perform a query
query_vector = [random.random() for _ in range(512)]
```

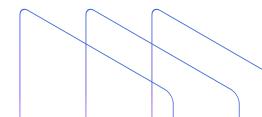
results = milvus.search(collection_name, query_records=[query_vector], top_

Interfacing with a Milvus instance is done via connections, not a client



The Solution to Hallucination

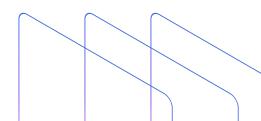
• Inject domain knowledge into large language models



03 The CVP Framework

The CVP Framework

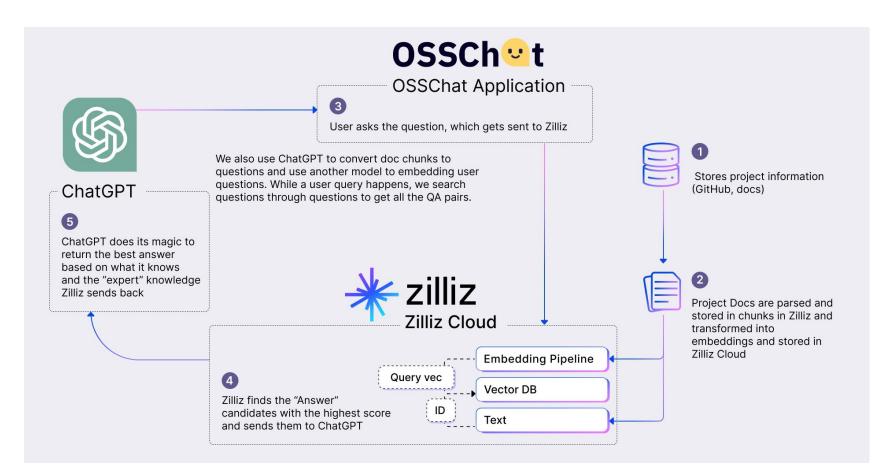
- Key idea: we can view LLM apps as a general purpose computer
 - Processor
 - Persistent storage
 - Code



The CVP Framework

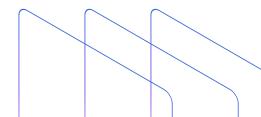
C: ChatGPT (or any other LLM)

- This can also be interpreted as the "processor" block for CVP
- V: Vector database (e.g. Milvus)
 - Can also be interpreted as the "storage" block for CVP
- P: Prompt-as-code
 - Interface between processor and storage blocks



https://zilliz.com/blog/ChatGPT-VectorDB-Prompt-as-code

• Query: "How do I perform a query using Milvus?"

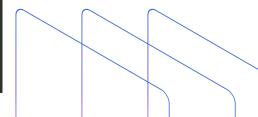


The Solution to Hallucination

from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection

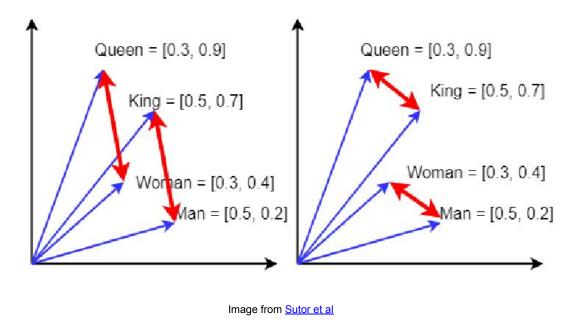
```
connections.connect(host='localhost', port='19530')
dim = 128
default fields = [
    FieldSchema(name="count", dtype=DataType.INT64, is primary=True),
    FieldSchema(name="random value", dtype=DataType.DOUBLE),
    FieldSchema(name="float vector", dtype=DataType.FLOAT VECTOR, dim=dim)
default schema = CollectionSchema(fields=default fields, description="test collection"
collection = Collection(name="hello milvus", schema=default schema)
query_vector = [[0.1, 0.2, 0.3, ..., 0.9, 1.0]]
search_param = {"nprobe": 16}
results = collection.guery(guery records=guery vector, top k=10, params=search param)
```

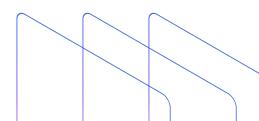
for result in results: print(result.id, result.distance)



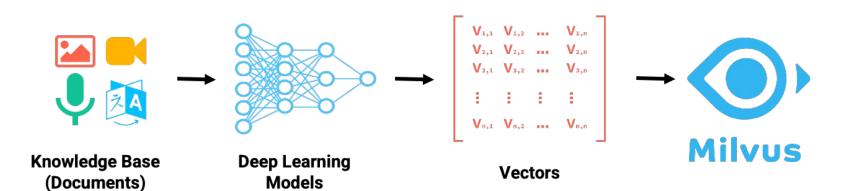
How Does This Solve Hallucinations?

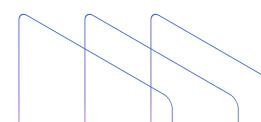
- Access to Domain Knowledge
- Semantic Search on Domain Knowledge via Vector Embeddings





How Do We Implement This in Practice?





04 What is a Vector Database? Featuring Milvus

Vector Database Overview

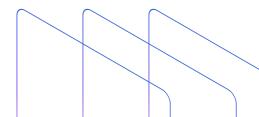
A database purpose-built to store, index, and query large quantities of vector embeddings.

O https://github.com/milvus-io/milvus

Why a Purpose-Built Vector Database?

- Vector search library
 - High-performance vector search
- Vector database
 - High-performance vector search
 - Replication, failover
 - Horizontal/vertical scalability
 - Automatic indexing
 - Backup/recovery

- How do I support different applications?
 - High query load
 - High insertion/deletion
 - Full precision/recall
 - Accelerator support (GPU, FPGA)
 - Billion-scale storage



Why a Purpose-Built Vector Database?

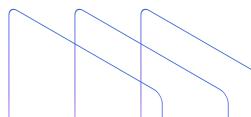
- Vector search library
 - High-performance vector search

Vector database

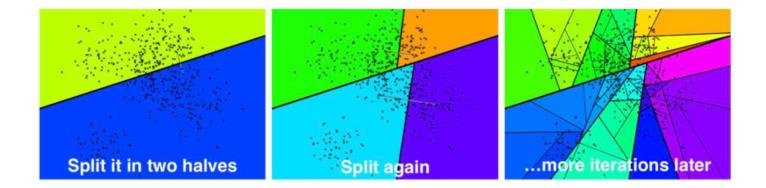
- Advanced filtering (filtered vector search, chained filters)
- Hybrid search (e.g. full text + dense vector)
- Durability (any write in a db is durable, a library typically only supports snapshotting)
- Replication / High Availability
- Sharding
- Aggregations or faceted search
- Backups
- Lifecycle management (CRUD, Batch delete, dropping whole indexes, reindexing)
- Multi-tenancy

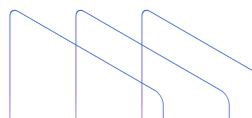
How do I support different applications?

- High query load
- High insertion/deletion
- Full precision/recall
- Accelerator support (GPU, FPGA)
- Billion-scale storage

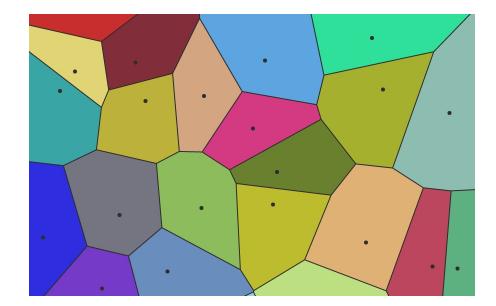


Approximate Nearest Neighbors Oh Yeah



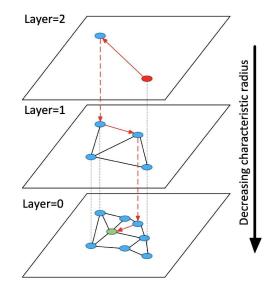


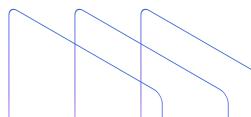
Inverted File Index



Source: <u>https://towardsdatascience.com/similarity-search-with-ivfpq-9c6348fd4db3</u>

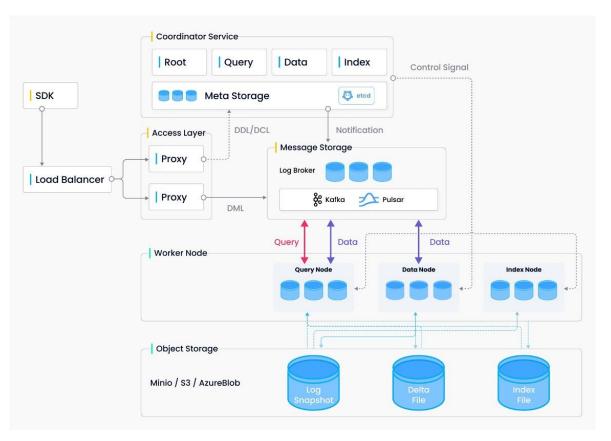
Hierarchical Navigable Small Worlds (HNSW)





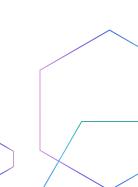
Source: https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf

Milvus Architecture



05 A Quick Demo

osschat.io



THANK YOU FOR LISTENING

github.com/milvus-io/milvus

