
Frank Liu
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A Quick 
Refresher
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Embeddings models workhorses of AI apps
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Embeddings models workhorses of AI apps
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Back in the day…
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Back in the day…

“Handcrafted features”



7 |   © Copyright Zilliz7

Modern day embeddings

Source: Arize Phoenix

https://github.com/Arize-ai/phoenix
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Generating 
Text 
Embeddings
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Recurrent neural networks

Source: CS230 notes

https://github.com/afshinea/stanford-cs-230-deep-learning
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Recurrent neural networks

Source: CS230 notes

https://github.com/afshinea/stanford-cs-230-deep-learning
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Transformer encoder 

Source: Illustrated Transformer

http://jalammar.github.io/illustrated-transformer/
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Transformer encoder 

Source: Illustrated Transformer

One 
embedding 
per token!

http://jalammar.github.io/illustrated-transformer/
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BERT  

Source: BERT paper

https://arxiv.org/abs/1810.04805
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BERT  

Source: BERT paper

Cross-encoder 
(one inference per 
query/document 
pair) 

https://arxiv.org/abs/1810.04805
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Sentence BERT  

Source: SBERT paper

https://arxiv.org/abs/1908.10084
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Sentence BERT  

Source: SBERT paper

Bi-encoder
1 embedding per text

https://arxiv.org/abs/1908.10084


17 |   © Copyright Zilliz17

Text embedding models today
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Text embedding models today

• Some flavor of SBERT
• Self-supervised pre-training (masking + NSP)
• Contrastive (regression) or triplet loss
• Changes to model arch or training, e.g. sparse attention, masking entities, or 

a different objective function
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• Highly data-dependent
• Symmetric or asymmetric embeddings
• Different models for different “domains” of text 
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Text embedding models today

• Some flavor of SBERT
• Self-supervised pre-training (masking + NSP)
• Contrastive (regression) or triplet loss
• Changes to model arch or training, e.g. sparse attention, masking entities, or 

a different objective function

• Highly data-dependent
• Symmetric or asymmetric embeddings
• Different models for different “domains” of text

• Limited token length
• Sweet spot seems to be around 100 - 200 tokens
• Roughly equal to one paragraph
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Which embedding models are best?

Source: MTEB Leaderboard

https://huggingface.co/spaces/mteb/leaderboard
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Which embedding models are best?

• Determine your application requirements 
• What task am I interested in, e.g. classification, retrieval, etc?
• Do we have enough data to fine-tune a model? -> make your own
• How much latency are we okay with? -> pick smaller model
• Are we okay with false positives? -> specialized model
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Which embedding models are best?

• Determine your application requirements 
• What task am I interested in, e.g. classification, retrieval, etc?
• Do we have enough data to fine-tune a model? -> make your own
• How much latency are we okay with? -> pick smaller model
• Are we okay with false positives? -> specialized model

• There is no one right answer
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Demo Time


