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Why Do Citations Matter?
How Can You Build a Citation Engine?

What Goes Into a Citation Engine?

FAQ
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Why Do Citations
Matter?
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A Hallucination Problem

FFFFFF > BUSINESS

BREAKING

Lawyer Used ChatGPT In
Court—And Cited Fake
Cases. A Judge Is
Considering Sanctions ME: FIND 10
Molly Bohannon Forbes Staff sc“nmu
I cover breaking news. m ““cl[s
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A Basic Neural Net

input layer
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hidden layer

output layer
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A Recurrent Neural Network
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A Transformer Architecture
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GPT Architecture
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Decoder-Only Architecture
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Takeaway

The reason ChatGPT hallucinates is because ...

It's set up to predict a series of words (tokens)
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How Can You Build a
Citation Engine?



Process for Basic Data Injection to LLMs
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Semantic Similarity

Queen - Woman + Man = King

Queen = [0.3, 0.9] Queen = [0.3, 0.9]
King = [0.5, 0.7] King = [0.5, 0.7]
Wadman = [0.3, 0.4] Woman = [0.3, 0.4]
N\
Man = [0.5, 0.2] Man = [0.5, 0.2]

Image from Sutor et al
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https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657

Semantic Similarity

Queen - Woman + Man = King

Queen =[0.3, 0.9]
King = [0.5, 0.7] King = [0.5, 0.7] 0.0, 0.]
Wadman = [0.3, 0.4] Woman = [0.3, 0.4]
N\
Man = [0.5, 0.2] Man = [0.5, 0.2]

Image from Sutor et al
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https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657

Semantic Similarity

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Waman = [0.3, 0.4]

Man = [0.5, 0.2]

Queen

- [0.3, 0.9]

King = [0.5, 0.7]

Woman = [0.3, 0.4]

N\

Man = [0.5, 0.2]
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Image from Sutor et al

Queen - Woman + Man = King

Queen =[0.3, 0.9]
- Woman = [0.3, 0.4]

[0.0, 0.5]
+ Man = [0.5, 0.2]

King = [0.5, 0.7]
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https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657

Typical Similarity Search
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Perform Approximate
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Similarity Search

a4
Vector
Database
1
\
2 5
Store in Get Results

Vector Database

Query

ER TR P

o
o
=]
o

o

Perform
Query

S zilliz



What Does Your Data Look Like?

"id": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-927585¢«
"embedding": [-0.042092223,-0.0154002765,-0.014588429,-0.031147376,0.03801204,0.013369046,(
"date"; "2023-06-01"
@h": "We define an anomaly as foHovv)t
"reading_time 1"
"subtitle"; "A guide for the implementation of an anomaly..."
"publication": "Towards Data Science"
respunses”: 1"

"article_url": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-
"title": "Detection of Credit Card Fraud with an Autoencoder"
"elaps™: "229"

N Hide 6 fields ] [ Q Vector search
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What Goes Into a
Citation Engine?
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LLM App Framework

CVP Stack

C: ChatGPT (or any other LLM)
e This can also be interpreted as the “processor” block for CVP

V: Vector database (e.g. Milvus)
e Can also be interpreted as the “storage” block for CVP

P: Prompt-as-code (e.g. Haystack)
e Interface between processor and storage blocks
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Where Do Citations Sit?
CVP Stack

C: ChatGPT (or any other LLM)
e This can also be interpreted as the “processor” block for CVP

V: Vector database (e.g. Milvus)
e Can also be interpreted as the “storage” block for CVP

P: Prompt-as-code (e.g. Haystack)
¢ Interface between processor and storage blocks
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Example Notebook
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FAQs



FAQ - Use Cases

- When NOT to use
- CSV Files? PDFs?
- Hybrid Search
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Vector Database Architecture
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Architecture

LLM

Keyword Index

Doc 1 KWs

Doc 2 KWs

1

Query Decomposer F— Query

Vector Store Doc n-1 KWs

Doc n KWs
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Multi Document Query Engine Code Sample
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Appendix



An Example Idea

Example

® A company has 100,000s+ pages of proprietary documentation to
enable their staff to service customers.

Problem
® Searching can be slow, inefficient, or lack context.

Solution

® (Create internal chatbot with ChatGPT and a vector database

enriched with company documentation to provide direction and
support to employees and customers.
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How are these generated?

o o

INPUT LAYER I HIDDEN LAYERS
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Traditional databases face lots of challenges to
manage vectors

Inefficiency in High-dimensional spaces
Suboptimal Indexing

Inadequate query support

Lack of scalability

Limited analytics capabilities

Data conversion issues
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Why a Vector Database?

Purpose-built to store, index and query vector embeddings from unstructured data.

Vector database Vector search library
« Advanced filtering (filtered vector search, « High-performance vector search
chained filters)
» Hybrid search (e.g. full text + dense vector) How do | support different applications?
+ Durability (any write in a db is durable, a + High query load

library typically only supports snapshotting)

« High insertion/deletion
* Replication / High Availability

» Full precision/recall

* Sharding - Accelerator support (GPU, FPGA)
» Aggregations or faceted search . Billion-scale storage

* Backups

« Lifecycle management (CRUD, Batch delete,
dropping whole indexes, reindexing)

* Multi-tenancy
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