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01 Why Retrieval 
Augmented Generation?
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Why Retrieval Augmented Generation (RAG)?
–an example
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Prompting and Prompt Engineering

• LLMs do not know the answer to 
everything

• We can help them by giving them the 
relevant context

• Once retrieved, we augment the prompt 
(instruction) with the relevant context
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Prompting and Prompt Engineering
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How Does RAG work?
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What’s a RAG tech stack look like?

CVP Stack

C: ChatGPT (or any other LLM)
• This can also be interpreted as the “processor” block for CVP

V: Vector database (e.g. Milvus)
• Can also be interpreted as the “storage” block for CVP

P: Prompt-as-code (e.g. Haystack)
• Interface between processor and storage blocks 
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1
Stores project information 

(GitHub, docs)

2
Project Docs are parsed 
and stored in chunks in 

Zilliz and transformed into 
embeddings and stored in 

Zilliz Cloud

3 User asks the question, 
which gets sent to Zilliz

4

Zillz finds the “Answer” 
candidates with the 

highest score and sends 
them to ChatGPT

6
Chat GPT does its magic to 

return the best answer based 
on what it knows and the 

“expert” knowledge Zilliz sends 
back

Embedding Pipeline

Vector DB

Text

Query vec

ID

ChatGPT

We also use ChatGPT to convert doc chunks to questions and use 
another model to embedding user questions. While a user query 

happens, we search questions through questions to get all QA pairs.

Cloud
5

Zillz Cloud checks GPTCache for 
answers first, and if it finds one, it will 

send the result directly to the user.  If it 
cannot find an answer in GPTCache, 

Zilliz Cloud will send the query to 
ChatGPT to get a response and store it 

in GPTCache.

Mis
s

Hit

OSS Chat | CVP Stack

Orchestration
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02 Using a Vector DB for 
RAG
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Why Use a Vector Database?

• Use your data
• Get relevant responses
• Economics
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Vector
Database

Vn, 1

…

Unstructured Data

Images

User Generated

Video

Documents

Audio

Vector
Embeddings

2

Store in 
Vector Database

3

Perform 
Query

4

Perform Approximate 
Nearest Neighbor 
Similarity Search

1

Transform into 
Vectors

5

Get Results

…

…

Vectors Query

How Similarity Search Works
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Semantic Similarity

Image from Sutor et al

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Man = [0.5, 0.2]

Queen - Woman + Man = King

Man = [0.5, 0.2]

https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657
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Semantic Similarity

Image from Sutor et al

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Man = [0.5, 0.2]

Queen - Woman + Man = King

Queen = [0.3, 0.9]
-      Woman = [0.3, 0.4]

[0.0, 0.5]

Man = [0.5, 0.2]

https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657
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Semantic Similarity

Image from Sutor et al

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Woman = [0.3, 0.4]

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Man = [0.5, 0.2]

Queen - Woman + Man = King

Queen = [0.3, 0.9]
-      Woman = [0.3, 0.4]

                       [0.0, 0.5]
+          Man = [0.5, 0.2]

            King = [0.5, 0.7]

Man = [0.5, 0.2]

https://www.researchgate.net/figure/The-classical-king-woman-man-queen-example-of-neural-word-embeddings-in-2D-It_fig1_332679657
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Meta Storage

Root Query Data Index

Coordinator Service

Proxy

Proxy

etcd

Log Broker

SDK

Load Balancer

DDL/DCL

DML

NOTIFICATION

CONTROL SIGNAL

Object Storage

Minio / S3 / AzureBlob
Log Snapshot Delta File Index File

Worker Node QUERY DATA DATA

Message Storage

VECTOR 
DATABASE

Access Layer

Query Node Data Node Index Node

Vector Database Architecture
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03 Building a RAG Pipeline 
with Haystack
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Haystack

• Fully open-source framework 
built in Python to designed to 
build LLM applications

• Core NLP tasks covered
• Production focused
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Haystack

• Fully open-source framework 
built in Python to designed to 
build LLM applications

• Core NLP tasks covered
• Production focused
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Haystack

• Fully open-source framework 
built in Python to designed to 
build LLM applications

• Core NLP tasks covered
• Production focused
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Haystack Pipelines: RAG

PromptTemplate

● Flexible prompts that can be modified per query
● A blueprint of how to interact with LLMs

PromptNode

● Interact with LLMs in a customized way
● An interface to send queries and receive answers from 

LLMs
● Use models from OpenAI, Hugging Face (falcon, MPT) 

and co:here (and more to come)
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Haystack Pipelines: RAG
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Haystack Pipelines: RAG
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Prompt Templating
Instruct the LLM on what to do with the provided information. For example, 
build your custom PromptTemplate 👇
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PromptNode
Use your PromptTemplate as a blueprint of how you want to interact with 
the LLM of your choice 👇



30 |   © Copyright  8/4/23  Zilliz30 |   © Copyright  8/4/23  Zilliz

PromptNode
Or, use one of the prompts that we’ve made available on the PromptHub 👇

https://prompthub.deepset.ai/?prompt=deepset%2Fquestion-answering
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Build a RAG Pipeline
You can build a RAG pipeline on top of the DocumentStore of your choice 
as well as the models of your choice for both the retrieval and answer 
generation steps 👇
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Build a RAG Pipeline
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Build a RAG Pipeline
You can build a RAG pipeline on top of the DocumentStore of your choice 
as well as the models of your choice for both the retrieval and answer 
generation steps 👇
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Build a RAG Pipeline
When you run the pipeline with a query:
1. The top_k retrieved documents will be joined and added to the 

prompt
2. The LLM will produce an answer based on the full, augmented 

instruction 👇



35 |   © Copyright  8/4/23  Zilliz35 |   © Copyright  8/4/23  Zilliz

Try it out 👇
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04 FAQs
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FAQ - Use Cases

- When NOT to use
- CSV Files? PDFs?
- Hybrid Search
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T H A N K   Y O U 
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05 Appendix
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An Example Idea

Example
• A company has 100,000s+ pages of proprietary documentation to 

enable their staff to service customers.

Problem
• Searching can be slow, inefficient, or lack context.

Solution
• Create internal chatbot with ChatGPT and a vector database 

enriched with company documentation to provide direction and 
support to employees and customers.
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How are these generated?
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Traditional databases face lots of challenges to 
manage vectors 
● Inefficiency in High-dimensional spaces
● Suboptimal Indexing
● Inadequate query support
● Lack of scalability
● Limited analytics capabilities
● Data conversion issues
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Why a Vector Database? 

Vector database
• Advanced filtering (filtered vector search, 

chained filters)
• Hybrid search (e.g. full text + dense vector)
• Durability (any write in a db is durable, a 

library typically only supports snapshotting)
• Replication / High Availability
• Sharding
• Aggregations or faceted search
• Backups
• Lifecycle management (CRUD, Batch delete, 

dropping whole indexes, reindexing)
• Multi-tenancy

Vector search library
• High-performance vector search

How do I support different applications?
• High query load
• High insertion/deletion
• Full precision/recall
• Accelerator support (GPU, FPGA)
• Billion-scale storage

Purpose-built to store, index and query vector embeddings from unstructured data.


