

Building Retrieval Augmented Pipelines at Scale

August 2023 | Yujian Tang, Tuana Çelik

Upcoming Events

WEBINAR LLM App Development with LangChain

Lance Martin Software / ML at LangChain

August 24, 2023 | 9:00 AM PT

zilliz.com/event

Building Retrieval Augmented Pipelines at Scale

August 2023 | Yujian Tang, Tuana Çelik

Speaker

Tuana Celik

Developer Advocate, deepset

tuana.celik@deepset.ai https://www.linkedin.com/in/tuanacelik https://twitter.com/tuanacelik

Speaker

Yujian Tang

Developer Advocate, Zilliz

yujian@zilliz.com https://www.linkedin.com/in/yujiantang https://www.twitter.com/yujian_tang

01 Why Retrieval Augmented Generation?

02 Using a Vector Database for RAG

03 Building a RAG Pipeline w/ Haystack

04 FAQ

01

Why Retrieval Augmented Generation?

Why Retrieval Augmented Generation (RAG)? –an example

What time is the talk about retrieval augmentation?

I'm sorry, but I don't have access to real-time information or schedules as my knowledge only goes up until September 2021. Therefore, I can't provide you with the specific time of the talk about retrieval augmentation. If you're looking for information about a specific event or schedule, I recommend checking the event's official website, social media pages, or contacting the event organizers directly for the most up-to-date information. Is there anything else I can assist you with?

Prompting and Prompt Engineering

- LLMs do not know the answer to everything
- We can help them by giving them the relevant context
- Once retrieved, we augment the prompt (instruction) with the relevant context

Details

Topic: Connecting your unstructured data with LLMs

What we'll do:

Have some food/dinner and refreshments. Have three exciting talks about LLMs and unstructured data.

5:30 - 6:00 - Welcome/Networking/Registration
6:00 - 6:20 - Analyzing High Dimensional LLM Data - Francisco Castillo, Data Scientist at Arize Al
6:25 - 6:55 - Retrieval Augmented Generation Pipelines with Haystack - Tuana Celik,

Developer Advocate at deepset 7:00 - 7:30 - Building LLM Apps at Scale - Yujian Tang, Developer Advocate at Zilliz 7:30 - 8:30 - Networking

Prompting and Prompt Engineering

Given the context, please answer the question. If the answer is not contained within the context below, say 'I don't know'.

Context:

5:30 - 6:00 - Welcome/Networking/Registration

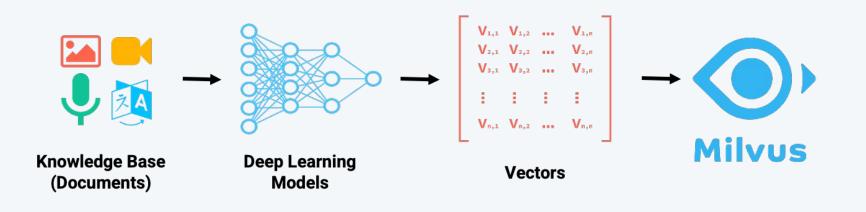
6:00 - 6:20 - Analyzing High Dimensional LLM Data - Francisco Castillo, Data Scientist at Arize Al

6:25 - 6:55 - Retrieval Augmented Generation Pipelines with Haystack - Tuana Celik,

Developer Advocate at deepset

7:00 - 7:30 - Building LLM Apps at Scale - Yujian Tang, Developer Advocate at Zilliz

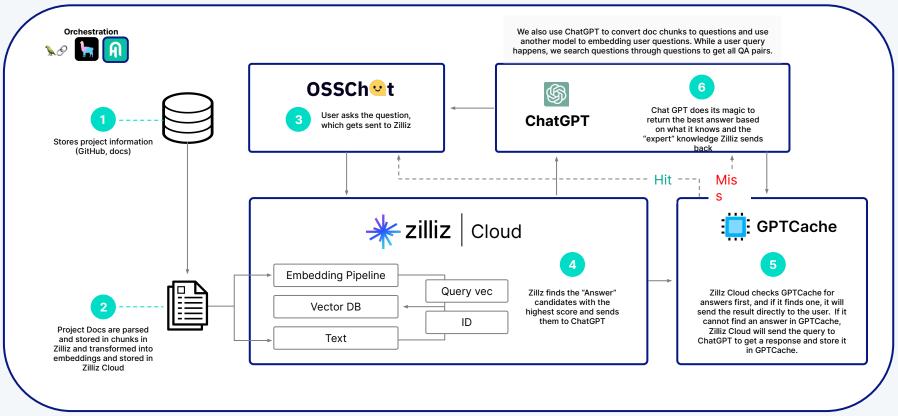
7:30 - 8:30 - Networking


Question: What time is the talk about retrieval augmentation?

Answer:

The talk about retrieval augmentation is scheduled for 6:25 PM to 6:55 PM.

How Does RAG work?


What's a RAG tech stack look like?

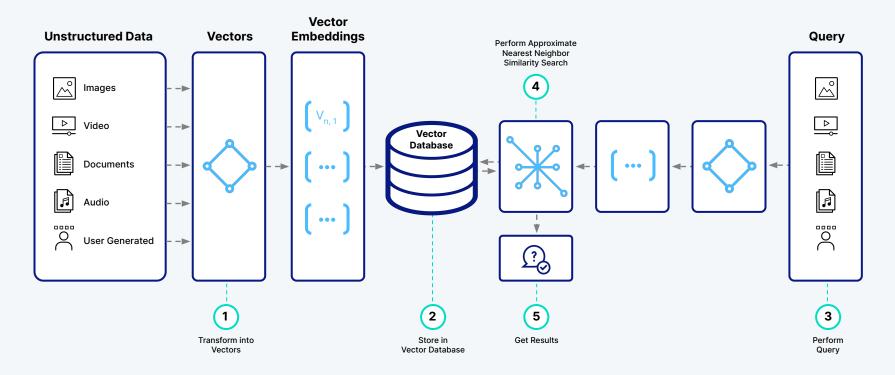
CVP Stack

- **C**: ChatGPT (or any other LLM)
 - This can also be interpreted as the "processor" block for CVP
- V: Vector database (e.g. Milvus)
 - Can also be interpreted as the "storage" block for CVP
- P: Prompt-as-code (e.g. Haystack)
 - Interface between processor and storage blocks

OSS Chat | CVP Stack

02

Using a Vector DB for RAG



Why Use a Vector Database?

- Use your data
- Get relevant responses
- Economics

How Similarity Search Works

Semantic Similarity

Queen - Woman + Man = King

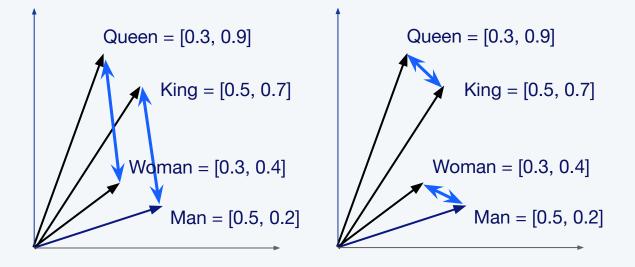
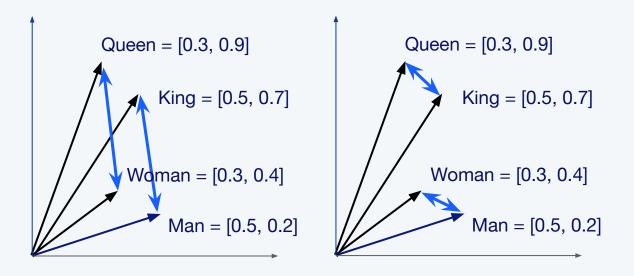
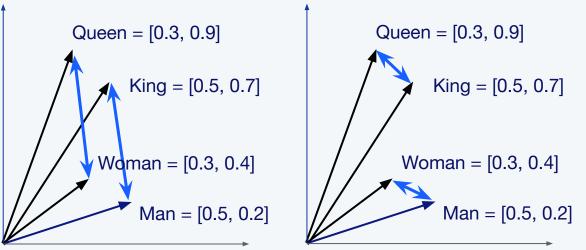



Image from Sutor et al

Semantic Similarity


Queen - Woman + Man = King

Queen = [0.3, 0.9] - Woman = [0.3, 0.4] [0.0, 0.5]

Image from Sutor et al

Semantic Similarity

Queen - Woman + Man = King

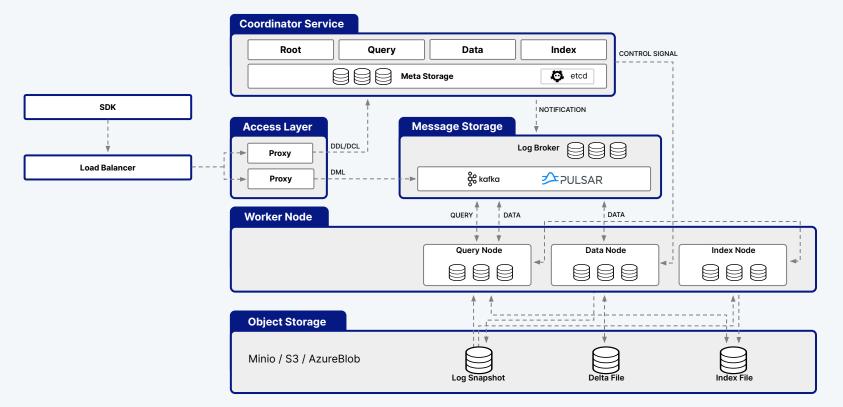
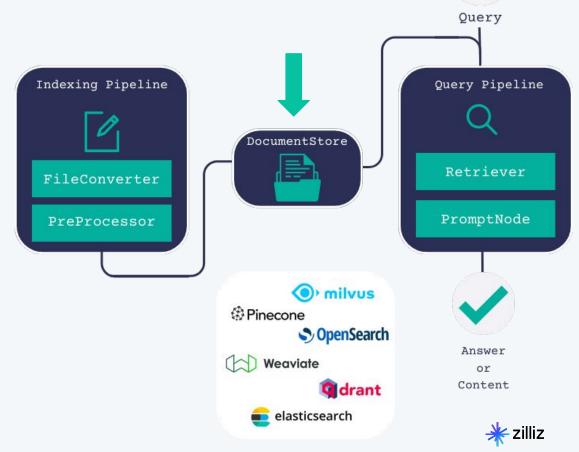

Queen = [0.3, 0.9]- Woman = [0.3, 0.4][0.0, 0.5] + Man = [0.5, 0.2]King = [0.5, 0.7]

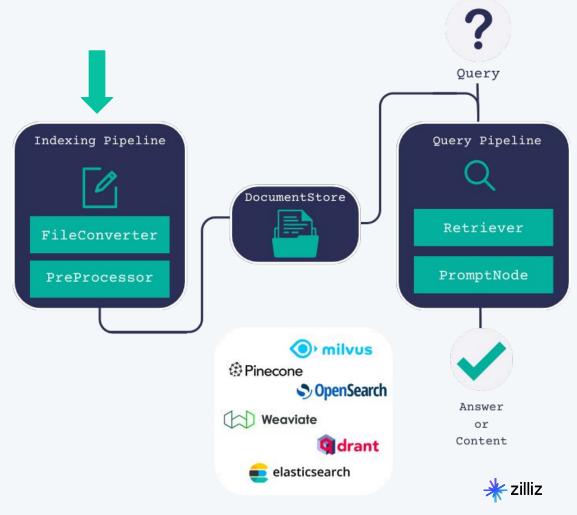
Image from Sutor et al

Vector Database Architecture


Building a RAG Pipeline with Haystack

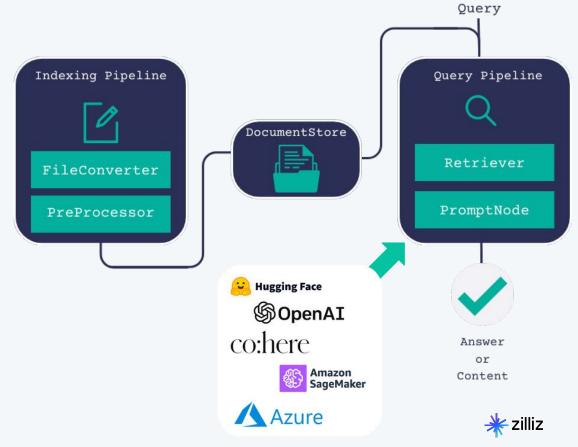
Haystack

- Fully open-source framework built in Python to designed to build LLM applications
- Core NLP tasks covered
- Production focused



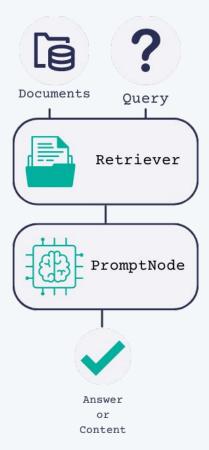
Haystack

- Fully open-source framework built in Python to designed to build LLM applications
- Core NLP tasks covered
- Production focused



Haystack

- Fully open-source framework built in Python to designed to build LLM applications
- Core NLP tasks covered
- Production focused


Haystack Pipelines: RAG

PromptTemplate

- Flexible prompts that can be modified per query
- A blueprint of how to interact with LLMs

PromptNode

- Interact with LLMs in a customized way
- An interface to send queries and receive answers from LLMs
- Use models from OpenAl, Hugging Face (falcon, MPT) and co:here (and more to come)

Haystack Pipelines: RAG

What time is the talk about retrieval augmentation?

I'm sorry, but I don't have access to real-time information or schedules as my knowledge only goes up until September 2021. Therefore, I can't provide you with the specific time of the talk about retrieval augmentation. If you're looking for information about a specific event or schedule, I recommend checking the event's official website, social media pages, or contacting the event organizers directly for the most up-to-date information. Is there anything else I can assist you with?

Haystack Pipelines: RAG

Given the context, please answer the question. If the answer is not contained within the context below, say 'I don't know'.

Context:

5:30 - 6:00 - Welcome/Networking/Registration

6:00 - 6:20 - Analyzing High Dimensional LLM Data - Francisco Castillo, Data Scientist at Arize Al

6:25 - 6:55 - Retrieval Augmented Generation Pipelines with Haystack - Tuana Celik, Developer Advocate at deepset

7:00 - 7:30 - Building LLM Apps at Scale - Yujian Tang, Developer Advocate at Zilliz

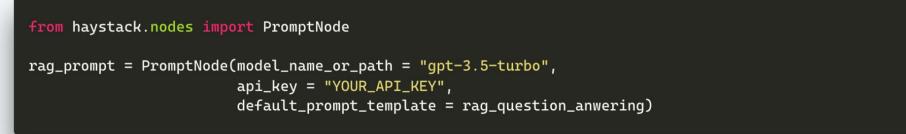
7:30 - 8:30 - Networking

Question: What time is the talk about retrieval augmentation?

Answer:

The talk about retrieval augmentation is scheduled for 6:25 PM to 6:55 PM.

Prompt Templating


Instruct the LLM on what to do with the provided information. For example, build your custom PromptTemplate

from haystack.nodes import PromptTemplate

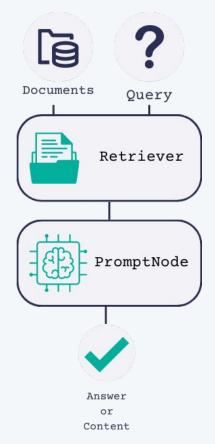
PromptNode

Use your PromptTemplate as a blueprint of how you want to interact with the LLM of your choice

PromptNode

Or, use one of the prompts that we've made available on the PromptHub

from haystack.nodes import PromptNode



You can build a RAG pipeline on top of the DocumentStore of your choice as well as the models of your choice for both the retrieval and answer generation steps

```
from milvus_haystack import MilvusDocumentStore
from haystack.nodes import EmbeddingRetriever, PromptNode
```

```
document_store = MilvusDocumentStore()
```


You can build a RAG pipeline on top of the DocumentStore of your choice as well as the models of your choice for both the retrieval and answer generation steps

from haystack import Pipeline

```
pipeline = Pipeline()
```

```
pipeline.add_node(component = retriever, name = "Retriever", inputs = ["Query"])
pipeline.add_node(component = prompt_node, name = "PromptNode", inputs = ["Retriever"])
```


When you run the pipeline with a query:

- 1. The top_k retrieved documents will be joined and added to the prompt
- 2. The LLM will produce an answer based on the full, augmented instruction

Reduce Hallucinations 🥯 with Retrieval Augmentation

Ask a question about the collapse of the Silicon Valley Bank (SVB).

Did SVB collapse?	Run	Example questions
		Did SVB collapse?
17/200/		Why did SVB collapse?
Answer Type:		What does SVB failure mean for our economy?
 Retrieval augmented (static news dataset) Retrieval augmented with web search 		Who is responsible for SVB collapse?
Answer with plain GPT		When di
No, SVB (Silicon Valley Bank) did not collapse. It is still a functioning financial institution.		Try it out 👇
Answer with Retrieval augmented GPT (static news dataset)		
Yes, SVB collapsed and filed for Chapter 11 bankruptcy protection.		

04

FAQs

∦zilliz

FAQ - Use Cases

- When NOT to use
- CSV Files? PDFs?
- Hybrid Search

THANK YOU

05

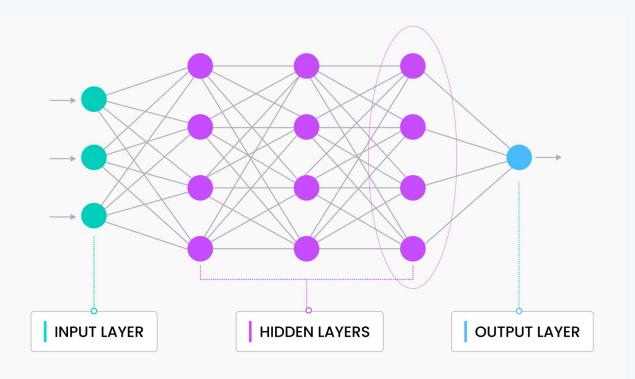
Appendix

An Example Idea

Example

 A company has 100,000s+ pages of proprietary documentation to enable their staff to service customers.

Problem


• Searching can be slow, inefficient, or lack context.

Solution

 Create internal chatbot with ChatGPT and a vector database enriched with company documentation to provide direction and support to employees and customers.

How are these generated?

Traditional databases face lots of challenges to manage vectors

- Inefficiency in High-dimensional spaces
- Suboptimal Indexing
- Inadequate query support
- Lack of scalability
- Limited analytics capabilities
- Data conversion issues

Why a Vector Database?

Purpose-built to store, index and query vector embeddings from unstructured data.

Vector database

- Advanced filtering (filtered vector search, chained filters)
- Hybrid search (e.g. full text + dense vector)
- Durability (any write in a db is durable, a library typically only supports snapshotting)
- Replication / High Availability
- Sharding
- Aggregations or faceted search
- Backups
- Lifecycle management (CRUD, Batch delete, dropping whole indexes, reindexing)
- Multi-tenancy

Vector search library

• High-performance vector search

How do I support different applications?

- High query load
- High insertion/deletion
- Full precision/recall
- Accelerator support (GPU, FPGA)
- Billion-scale storage

